第八章激光光束质地评判

  • A+
所属分类:固体激光器
第八章激光光束质量评价_工学_高等教育_教育专区。2012,高春清 激光光束质量的评价和测量 2012,高春清 激光光束质量概念的引入 常用激光器输出光束的特点; ? 低功率的气体激光器
第八章激光光束质地评判

第八章激光光束质地评判

  第八章激光光束质量评价_工学_高等教育_教育专区。2012,高春清 激光光束质量的评价和测量 2012,高春清 激光光束质量概念的引入 常用激光器输出光束的特点; ? 低功率的气体激光器、固体激光器输出的光束多为基模 高斯光束; ? 当输出功

  2012,高春清 激光光束质量的评价和测量 2012,高春清 激光光束质量概念的引入 常用激光器输出光束的特点; ? 低功率的气体激光器、固体激光器输出的光束多为基模 高斯光束; ? 当输出功率较高时气体、固体激光器输出光束多为基模 和高阶模混合的多模光束; ? 半导体激光器输出的光束在一个方向上输出光束接近于 基模高斯光束,但在另一个方向上呈现明显的多模特 性。 为了科学、客观地评价激光器输出光束的特性,人们引入了 激光光束质量的概念,用来评价激光器的空间光束特性。 2012,高春清 激光束宽的定义方法 ? 激光束的束宽的几种定义方法: ?光强二阶矩定义法 ?功率(或能量)通量定义法 ?振幅临界值定义法 ?拐点定义法 ?光强二阶矩定义法和功率(或能量)通量定义法是国际标 准化委员会(International Standard Organization, ISO)推荐的 光束宽度的两种主要定义方法; ? 我国《激光术语》国家标准采用了光强二阶矩法和功率 (或能量)通量定义法定义光束宽度; 2012,高春清 激光束的二阶矩及其定义的束宽 ? 二阶矩定义束宽:用二维面阵探测器测量激光束在某一 横模面上的光强分布,并根据光强分布可得出激光束的 一阶强度矩和二阶强度矩等参量,进而计算激光束的光 束宽度及其它一些光束参数; ? 激光束横截面上功率 ( 或能量 )密度分布:正比于激光束 振幅模值的平方: I ( x, y,z ) ? A( x, y,z ) ? A* ( x, y ,z ) ? A( x, y,z ) 2 ?激光束的总功率(或能量)为 P?? ?? ?? ?? ?? ? I ( x, y,z )dxdy 2012,高春清 激光束的二阶矩及其定义的束宽 ? 激光束的一阶强度矩 xI ( x, y,z )dxdy 1 ? ? x ( z) ? ? ? ? xI ( x, y,z )dxdy P I ( x , y , z ) dx dy ? ? ?? ?? yI ( x, y,z )dxdy 1 ? ? ? ? ? ? ? ?? ? y( z) ? ?? ?? ? ? ? yI ( x, y,z )dxdy ?? ?? P ??? ??? I ( x, y,z )dxdy ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?光强一阶矩x ( z ) y ( z )可用于表示激光束在某一位置(z处) 光场分布的重心位置 ?当选取激光束的光轴使其通过激光束的重心时光强一阶 矩为零 2012,高春清 激光束的二阶矩及其定义的束宽 ? 激光束关于x和y的光强二阶矩: 1 ?? ?? ? ( z ) ? ? ? ( x ? x ) 2 I ( x, y,z )dxdy P ?? ?? 1 ?? ?? 2 ? y ( z ) ? ? ? ( y ? y ) 2 I ( x, y,z )dxdy P ?? ?? 2 x ? 光束在空域中的光强二阶矩表示了光束功率(或能量) 由中心向外散布的程度 2012,高春清 激光束的二阶矩及其定义的束宽 ? 国际标准ISO11146和我国《激光术语》的国家标准都规定 激光束的宽度可由其光强二阶矩定义: d? x ( z ) ? 4? x ( z ) d? y ( z ) ? 4? y ( z ) ? 光束半宽度与光强二阶矩的关系为 w? x ( z ) ? 2? x ( z ) w? y ( z ) ? 2? y ( z ) 由光强二阶矩定义的光束宽度满足ABCD传输定律,可用 来计算激光束传输到其它位置时的光束宽度。 2012,高春清 功率通量法定义的束宽 ? 功率(或能量)通量法:也是一种ISO推荐的定义光束宽度 (光斑半径或直径)的方法,在实际应用中具有非常重 要的意义。 ? 定义:对于圆对称光束,在垂直于光轴的平面内,定义 包含u%(一般u%取1-1/e2(86.5%))激光束总功率(或 能量)的圆的半径为光斑半径 ? 2? 0 d? ? wu ( z ) 0 I ( ? ,? , z ) ? d? ? u% ? d? ? I ( ? ,? , z ) ? d? 0 0 2? ? I ( ? ,? ,z ) 光束横截面功率(或能量)密度分布函数 正比于振幅的平方 2012,高春清 功率(或能量)通量法定义的束宽 ?对于基模高斯光束 ? ? x2 ? y2 ? ?? w0 k ( x2 ? y2 ) ? ? ? E ( x, y , z ) ? exp ? ? 2 exp ? j kz ? ? ? ( z ) ? ? ? ?? w( z ) 2R( z ) ? ? w (z) ? ?? ? ? ? ?光强分布函数为 2 ? 2? 2 ? w0 I ( ? ,? ,z ) ? 2 exp?? 2 ? , w ( z) ? w ( z) ? ?基模高斯光束中由86.5%功率通量法定义的光斑半径 与光强二阶矩定义的光斑半径相等 w86.5 ( z ) ? w? ( z ) 2012,高春清 功率(或能量)通量法定义的束宽 ? w86.5 ( z ) ? w? ( z ) 的关系只对基模高斯光束才成立; ?具有其它形式功率密度分布函数的光束由86.5%光强功率通 量所定义的束宽不等于光强二阶矩定义的束宽; ? 对于非圆对称光束:需分别定义x和y方向的光束宽度,即 分别在两个相互正交且垂直于光轴的x和y方向上,内含功 率占总功率规定百分数的最小宽度为束宽,x和y方向上的 束宽分别用dx,u和dy,u表示。 ?功率通量法定义的光束宽度的优点:可知所定义的光束宽度 内的激光功率占总功率的百分比。 2012,高春清 振幅临界值定义法 ? 振幅临界值定义法:用于定义高斯光束的光束半径; ? 高斯光束的光场函数: ? ? x2 ? y2 ? ?? w0 k ( x2 ? y2 ) ? ? ? E ( x, y , z ) ? exp ? ? 2 exp ? j kz ? ? ? ( z ) ? ? ? ? ? w( z ) 2 R( z ) ? ? w ( z) ? ?? ? ? ? ?当 ?= x 2 ? y 2 ? w( z ) 时,振幅减小到其振幅极大值的 1/e; ?高斯光束的振幅临界值法定义 束的光斑半径。 ? ? w( z ) 为基模高斯光 2012,高春清 拐点定义法 ? 拐点定义法:定义高斯光束振幅函数的拐点到中心的距离 为高斯光束的光斑半径。 ? 令高斯光束振幅分布函数的二阶导数为零 d2 d? 2 可求得拐点坐标为 ? w0 ? ? 2 ?? exp? ? 2 ? ? ??0 ? ? ? w ( z ) ?? ? w( z ) 2 ?? w( z ) ? 0.707 w( z ) 2 拐点法定义的光斑半径比振幅临界值定义法定义的光斑半 径略小。 2012,高春清 几种方法定义的束宽的比较 ? 对于基模高斯光束,简单计算可得 w( z ) ? x ( z) ? ? y ( z) ? 2 w? ( z ) ? 2? x ( z ) ? w( z ) ? 对于基模高斯光束,由光强二阶矩定义的光束半径与由 振幅临界值1/e法定义的光束半径相等,也等于86.5%功 率通量法定义的光斑半径。 ? 对于其它形式的光场,上述结论并不成立。 2012,高春清 几种方法定义的束宽的比较 ?光强二阶矩定义法和功率通量定义法可以定义任意光场分 布光束的光束宽度(光斑半径或直径); ?振幅临界值1/e法和拐点法并不能定义任意光场分布光束的 的光束宽度,原因是任意的光场可能存在不只一个极值点, 无法采用振幅临界值1/e法定义光束宽度,更不能采用拐点法 计算。 ?光强二阶矩定义的光束宽度和功率(或能量)通量定义法具有 更广泛的适用性。 2012,高春清 激光光束质量的评价方法 ? 自激光发明之后,人们就对激光器光束质量的评价方法进行 了研究并提出了不同的评价参数; ? 长期以来关于激光器的光束质量一直没有一个确切的定义方 法,也未建立起广泛认可的激光器光束质量的标准测量方 法; ? 20世纪90年代初A.E.Siegman教授提出了一套光束强度矩的理 论,并在此基础上定义了激光器的 M2因子,用以表征激光器 的光束质量; ? M2 因子引起了人们的广泛关注, ISO在此基础上制定了激光 器光束质量参数评价和测量的国际标准。 ? 对于绝大多数激光器而言 M2因子是一个较好的反映光束质量 的参数,并正在被广泛采用。 2012,高春清 激光光束质量的常用评价参数 ? 聚焦光斑尺寸 ? 远场发散角 ? ?值 ? 斯特列尔比 ? 光束参数积和M2因子 2012,高春清 激光光束质量的常用评价参数 ? 聚焦光斑尺寸:指用聚焦光斑尺寸作为评价激光光束质 量的参数; ? 设聚焦光学系统的焦距是f, 光阑直径为D, 在理想情况下 均匀平面波聚焦后爱里斑的宽度d为 f? d ? 1.22 D ? 聚焦光斑尺寸方法虽较为简单,但尚存在一些问题,主 要是聚焦光斑尺寸不是一个不变量,而是随着所用光学 系统的不同而发生改变,只用聚焦光斑尺寸一个参数作 为光束质量判据是不够的。 2012,高春清 激光光束质量的常用评价参数 ?远场发散角:指高斯光束的光束宽度在远场增大形成的渐 进锥面所构成的全角度; ?激光束的远场发散角也称作激光的束散角,在实际应用中 也常以其半角?表示 ; ?激光束的远场发散角可由无穷远处光束宽度d(z)与传输距 离之比定义 d (z) ? ? lim z ?? z 2012,高春清 激光光束质量的常用评价参数 ? 高斯光束的远场发散角(半角)为 ? ?? ?w0 ? 在波长一定的情况下,高斯光束的远场发散角只与束腰半 径大小有关,束腰半径越大,发散角越小。 ?可通过采用透镜或望远镜的方法改变光束的束腰半径,从 而实现改变光束发散角。 ?只用远场发散角一个参量表征激光器的空间光束质量是不 够的,在使用远场发散角时,需同时说明其对应的光斑大 小。 2012,高春清 激光光束质量的常用评价参数 ? 文献中还常用?值表示光束质量 ? ?值的定义 实际光束的远场发散角 ?? 理想光束的远场发散角 ? ?值一般大于1 ,?值越接近1,光束质量 越高,?=1为衍射极限 2012,高春清 激光光束质量的常用评价参数 ? 斯特列尔比 :在大气光学中常用斯特列尔比作为 评价激光光束质量的参数 实际焦斑处峰值功率 SR ? 理想焦斑处峰值功率 ? 斯特列尔比SR越大,则光束质量越好 2012,高春清 激光光束质量的常用评价参数 ? 光束参数积:Beam parameter product,BPP ? 定义:激光束的束腰半宽度w0与远场发散角(半角)?? 的乘积 ?光束参数积的单位:mm.mrad; d0 ? ? BPP ? w0 ? ? ? 4 ?激光器的光束参数积同时包含了激光的近场和远场特性, 与传输距离无关; ?对于任意激光束,其光束参数积是一个不变量; ?当激光束在自由空间传输以及经过透镜、反射镜、望远镜 系统等的光学系统变换时,其光束参数积不变。 2012,高春清 激光光束质量的常用评价参数 ? 对于非圆对称任一实际激光束,需在激光束两 个相互垂直的主方向 x和y上分别定义光束参数 积: BPP x ? w0 x ? ? x BPP y ? w0 y ? ? y 2012,高春清 激光光束质量的常用评价参数 ? M2因子 :定义为实际激光束的光束参数积与理想 基模高斯光束的光束参数积之比,是一个无量纲 的数,用以表征实际激光束的光束质量 ; 实际激光束的光束参数积 M ? 基模高斯光束的光束参数积 实际激光束的束腰宽度 ? 远场发散角 = 基模高斯光束的束腰宽度 ? 远场发散角 2 2012,高春清 激光光束质量的常用评价参数 ?根据基模高斯光束的远场发散角和束腰半径之间的关系: ? ?? ?w0 2 ?M2因子可写成 ? ? M ? w ? ?= d ? ? ? 4? ?对于非圆对称激光束:需在激光束两个相互垂直的两个主 方向上分别定义M2因子 ? ? M ? w0 x ? ? ? ? d 0 x ? x ? 4? ? ? 2 M y ? w0 y ? ? ? ? d 0 y ? y ? 4? 2 x M2因子同时包含了光束的近场特性和远场特性 2012,高春清 激光光束质量的常用评价参数 ? 光束传输因子:Beam propagation factor,K ? K也表示激光束的光束质量,K是M2因子的倒 数 1 Kx ? 2 Mx 1 Ky ? 2 My 2012,高春清 激光光束质量的常用评价参数 ? 由于光束参数积BPP是不变量,因此M2和K因子也是不变 量,它们表示了激光束的空间传输特性(激光器的空间光 束质量); ? 不管激光束在自由空间传输,还是经过透镜或望远镜系统 的准直和变换,激光束的 M2 因子都是不会发生改变的, 这是为什么利用M2因子表示光束质量的原因; ? M2因子是个不变量,可用来表示激光束的固有传输特性 2012,高春清 激光光束质量的常用评价参数 ?基模高斯光束的M2因子为1,是光束质量最好的激光 束。 ? 对于一个实际的激光束,只要其发散角不很大,都有 M21的结论,M2表示了实际光束远离衍射极限的基模高 斯光束的程度; ? M2因子的值越大,光束传输特性越差,激光束的空间 光束质量越差。 在M2因子的定义中,激光束的光束宽度必须以光强二阶 矩的方法定义,如果以其它的方法定义光束宽度,则不存 在上述结论。 2012,高春清 一些激光束的M2因子 ? 基模高斯光束的M2因子 ? ? x2 ? y 2 ? ?? w0 k ( x2 ? y 2 ) ? ? ? E ( x, y , z ) ? exp ? ? 2 exp ? j kz ? ? ? ( z ) ? ? ? ?? w( z) w ( z ) 2 R ( z ) ? ? ? ?? ? ? ? ?0 ? ( z) R( z ) ( z ? 0) 基模高斯光束的M2=1 2012,高春清 一些激光束的M2因子 厄米-高斯光束的M2因子 ? 厄米-高斯光束:当激光器的光学谐振腔具有平面对称 特征和腔内衍射孔径为矩形时的本征模。 ? m-n阶厄米高斯光束(TEMmn)的光场函数为 ? 2x ? ? 2 y ? ? x2 ? y 2 ? ?0 ?H n ? ? exp ?? 2 Emn ( x, y,z ) ? Cmn Hm? ? ? ? ? ? ( z) ? ? ( z) ? ? ? ( z) ? ? ( z ) ? ? ? ? exp ?? ? ? ?? k ( x2 ? y2 ) j ?kz ? ? (m ? n ? 1)? ( z )? ? 2 R( z ) ? ?? n/2 (?1) k n! H n ( x) ? ? (2 x) n ? 2 k k ? 0 k!( n ? 2k )! 2012,高春清 一些激光束的M2因子 ? 根据光强二阶矩的定义,厄米 - 高斯光束在 x 方向的光束宽 度为 dm (z) ? 4 ? ?? ?? x H [ 2 x / w( z )] e ? 2 m 2 2 m ? 2x2 w2 ( z ) dx 2x2 w2 ( z ) ? 2 2m ? 1w( z ) ? ?? ?? H [ 2 x / w( z )] e dx ?厄米-高斯光束在y方向的二阶矩束宽为 d n ( z ) ? 2 2n ? 1w( z ) 2012,高春清 一些激光束的M2因子 ? 厄密-高斯光束的远场发散角为 dm ( z) ? ? m ? lim ? 2 2m ? 1 ? 2 2m ? 1? 0 z ?? z ?w0 ?n ? 2 2n ? 1? 0 ?厄米-高斯光束的M2因子为 M2 x ? 2m ? 1 M2 y ? 2n ? 1 2012,高春清 拉盖尔-高斯光束的M2因子 ? 拉盖尔-高斯光束:当光学谐振腔的孔径为圆 形或其具有轴对称特征时的本征模。 ? p-l阶拉盖尔高斯光束(TEMpl)的光场函数为 w0 ? 2 ? ? l ? 2 ? 2 ? E pl ( ? , ? , z ) ? C pl Lp ? 2 ? ? ? exp(il? ) ? ? ? w( z ) ? w( z ) ? ? w ( z) ? ? ? ?2 ? ?? k?2 ? ? ? exp ? ? 2 ? exp ? ? j ? kz ? ? (2 p ? l ? 1)? ( z ) ? ? 2 R( z ) ? ? w ( z) ? ?? ? ? ? k ( p ? l )! ( ? ? ) Llp (? ) ? ? k ? 0 (l ? k )!k!( p ? k )! p l 2012,高春清 拉盖尔-高斯光束的M2因子 ? p-l阶拉盖尔-高斯光束的径向的光束宽度为 ? 2 ? ? ? l ? 2 ? 2 ?? ? 2? 2 ? 2 ? ?0 d? ?0 ? ? ? w2 ( z ) ? ?? exp?? w 2 ( z ) ? ? d? ? ? ( z) ? ? Lp ? ?? ? ? ? ? ? ? d pl ( z ) ? 2 2 2l 2 2 ? 2? ? ? 2? ? ? ? ? 2? 2 ? l ? 2? ? ?0 d? ?0 ? ? w2 ( z ) ? ?? exp?? w 2 ( z ) ? ? d? ? w( z ) ? ? L p ? ?? ? ? ? ? ? ? 2? ? 2l 2 ? 2 2 p ? l ? 1w( z ) ?对应的光束远场发散角为 d pl ( z ) ? ? pl ? lim ? 2 2 p ? l ?1 ? 2 2 p ? l ? 1?0 z ?? z ?w0 p-l阶拉盖尔-高斯光束M2因子为 M ? 2 p ? l ?1 2 pl 2012,高春清 内嵌高斯光束 ? 为了讨论的方便,人们常用内嵌高斯光束的方法讨论 激光束的传输。 ? 如果一个实际光束的光束质量为M2,则可假设一基模 高斯光束满足 d 0 ? d m /M ? 0 ? ? m /M 称这样的光束为实际光束的内嵌高斯光束 X(Y) ZR d 0 m=Md 0 θ0 d0 z0 θm=M θ0 Z 实际激光束 内嵌高斯光束 2012,高春清 内嵌高斯光束 ? 内嵌高斯光束与实际光束具有相同的瑞利长度zR和波 面曲率半径R,只是束宽相差一个因子M。 ? 分析实际光束的传输规律和进行光学系统设计时,可 按照基模光束的公式分析其内嵌高斯光束,再乘以因 子M得到实际光束的束宽和发散角。 2012,高春清 激光束传输特性参数的测量 激光束光束特性参数测量: – 束腰位置(z0) – 束腰直径或宽度(d0) – 远场发散角角(?) – M2因子 2012,高春清 光束宽度的测量方法 ? 束宽的测量是激光器各种空间参数测量的基础。 ? 根据ISO的规定,在束宽测量中,首选的束宽测 量方法是采用高空间分辨率、高信噪比的面阵探 测器,对光束横截面进行采样测量,得到功率密 度分布函数I(x, y, z) ,然后按照光强二阶矩的方 法计算束宽。 ? 面阵探测器:如高性能CCD探测器或者二极管面 阵等) 2012,高春清 光束宽度的测量 在利用二维面阵探测器测量束宽时要求: 1 )保证二维面阵探测器具有较高的线性度和均匀性,或者可 以通过标定的方法对其线性度和均匀性进行修正; 2 )保证面阵探测器接收的激光功率不小于激光束总功率的 99%; 3 )在被测激光器的光强较强时,必须要选用合适的光学衰减 器对入射光进行有效衰减,使入射到面阵探测器的光的强度 合适且不饱和,所选用的衰减器应不对入射光场的分布和波 前造成畸变。 常选用的衰减器是楔形棱镜和中性衰减片,利用楔形棱镜的 表面反射或者中性衰减片的有效吸收实现对入射光的衰减; 2012,高春清 光束宽度的测量 4 )当入射光场的光斑太大或太小时,需选用合适的光学 变换系统对入射光场进行光束变换,使变换后的光斑半 径与面阵探测器的接收面较为匹配(使入射光斑占据面 阵探测器的可探测面积1/3到1/2)。 所使用的光束变换系统应不对入射光场引入畸变; 5 )在利用光束处理软件计算束宽时,应合理扣除测量过 程中的背景噪声,提高测量系统的精度。 2012,高春清 远场发散角的测量 ? 测量方法1:根据激光束远场发散角的定义公式 d ( z) ? ? lim z ?? z 通过测量激光器在无穷远处的束宽测量出发散角 ? 测量方法2:首先使激光束通过一“无像差”的辅助透镜 进行变换,然后在透镜的后焦面上测量束宽,进而测 量激光束的远场发散角。 df ?? f ?? wf f 2012,高春清 远场发散角的测量 ? 激光束远场发散角测量原理示意图 H2 df f ?对于非圆对称光束,需在两个主方向上分别测量 wf x wf y ?x ? , ?y ? f f 2012,高春清 M2因子的测量 ? M2因子常用的测量方法:通过测量激光束在在传输过 程中束宽的变化,利用曲线因 子。 ? 已知由光强二阶矩定义的束宽在自由空间传输时满足 双曲线 d? ( z ) ? d 02 ? ? ( z ? z ) ? 0 ? 利用束宽传输定律可以测出激光束的M2因子 2012,高春清 M2因子的测量 被测激光束存在束腰位置时的测量方法: 1、利用面阵探测器在光束束腰位置两侧的多个位置分别 测量激光束的光束宽度; 2、一般应在至少十个不同的传输位置上测量光束宽度, 并且其中半数测量位置在距离束腰一倍瑞利长度之 内,其它位置应在激光束两倍瑞利长度之外; 3、将测量结果用双曲线进行拟合 d? ( z ) ? A ? Bz ? Cz 2 4、拟合后求出系数A,B,C,可计算得到相应光束参 数,进而求出M2因子 2012,高春清 M2因子的测量 ? 主要光束参数的计算公式: 束腰位置: 束腰宽度: 远场发散角: 瑞利长度: B z0 ? ? 2C d? 0 1 ? 2 C 4 AC ? B 2 ?? ? C 1 zR ? 4 AC ? B 2 2C ? M ? ? 4 AC ? B 2 8? 2 M2因子: 2012,高春清 M2因子的测量 被测激光束不存在束腰位置时的测量方法: 1、首先需用一个“无像差”透镜对被测激光束进行变换使 之在变换透镜之后形成一个人造的束腰 H1 2 H2 3 zR1 zR 2 1 x1 z01 f f x2 z02 2012,高春清 M2因子的测量 ? 变换前的光束的束腰位置距离透镜的前主面的 距离是: z01 ? V x2 ? f x2 ? z02 ? f V? f 2 2 zR ? x 2 2 2 2012,高春清 M2因子的测量 ? 被测光束的束宽、瑞利长度和远场发散角: d 01 ? V ? d 02 z R1 ? V ? z R 2 ?2 ?1 ? V ?如果激光束不是圆对称性的,则需在x和y两个主方向上 测量和分别计算激光束的束宽、束腰位置、瑞利长度、M2 因子等光束参数 2 2012,高春清 其它测量束宽的方法 ? 当不具备高信噪比和高分辨率的面阵探测系统 时的替代方法 ? 变孔径法(套孔法) 1、可变光阑 2、激光束 3、探测器 4、激光器 2012,高春清 其它测量束宽的方法 套孔法测量步骤: ? 调节可变光阑的位置,使激光束通过可变光阑的 中心。 ? 不断改变可变光阑通光孔径的大小,并利用探测 器探测通过可变光阑的通光孔径后激光能量大小 ? 定义当通过可变光阑的能量为激光总能量的 86.5%时的可变光阑通光孔径直径为光束直径, 记作d86.5 2012,高春清 其它测量束宽的方法 ? 以变孔径法测量求出的光束直径与光强二阶矩 法测量出的光束直径一般情况下并不相等。 ? 只有光强二阶矩法定义的光束宽度才满足 d ( z ) ? d 02 ? ? 2 ( z ? z0 ) 2 的传输定律 ? 将变孔径法测量得到的束宽变换成光强二阶矩 定义的束宽的公式: d? ? d86.5 1 M 86.5 2 2 ?1.14? M 86.5 ? 1? ? 1? ? ? ? ? ? ? ? ? 2012,高春清 其它测量束宽的方法 ? 移动刀口法 1、刀口 2、探测器 3、激光束 4、平移台 5、螺纹副 2012,高春清 其它测量束宽的方法 移动刀口法测量光束宽度的测量步骤: 1、沿某一方向(如x方向)移动刀口; 2、当通过刀口后透过的光功率是激光束总功率 的84%时,记下此时的位置(x1); 3、继续移动刀口,当通过刀口后透过的光功率 是激光束总功率16%时,记下此时的位置 (x2); 4、光束宽度dk的大小为 dk=2(x2 –x1) 2012,高春清 其它测量束宽的方法 ? 将移动刀口法测量得到的束宽变换成光强二阶 矩定义的束宽的公式: d? ? d k 1 Mk 2 2 ?0.81? ? ? M ? 1 ? 1 ? ? k ? ? ? ? ? ? 2012,高春清 其它测量束宽的方法 ? 移动狭缝法 1、移动狭缝 2、探测器 3、激光束 4、平移台 5、螺纹副 2012,高春清 其它测量束宽的方法 移动狭缝法测量束宽的步骤: 1、将狭缝移至激光光斑能量分布的中心处,此 时利用探测器记下光斑能量分布的峰值响应 2、沿同一方向移动单缝,利用探测器记下在光 斑能量分布峰值左右两边响应为13.5%峰值响 应的位置(x1)和位置(x2) 3、光束宽度ds的大小为 ds=2(x2 –x1) 2012,高春清 其它测量束宽的方法 ?将移动狭缝法测量得到的束宽变换成光强二阶 矩定义的束宽的公式: d? ? d s 1 Ms 2 2 ?0.95? M s ? 1? ? 1? ? ? ? ? ? ? ? ? 2012,高春清 作业 1、说明什么是光强二阶矩定义的激光束的宽度?什么是 功率通量法定义的激光束的宽度? 2、什么是激光器的远场发散角?如何在一个有限的空间 内测量激光器的远场发散角? 3、什么是激光束的M2因子?基模高斯光束的M2因子是 多少?厄密-高斯光束TEMmn的M2因子是多少? 4、利用一个透镜对激光束进行准直,准直后激光束的发 散角减小了5倍,请说明该激光束的M2因子如何变 化? 5、说明如何用移动刀口的方法测量激光束的宽度?

  • 版权声明:本站文章于2019-10-09 09:52,互联网采集,如有侵权请发邮件联系我们,我们在第一时间删除。
  • 转载请注明:第八章激光光束质地评判